

Surname	Initial(s)

Signature

Paper Reference(s)

4400/4H

London Examinations IGCSE

 Mathematics
Paper 4H

Higher Tier

Friday 18 May 2007 - Afternoon
Time: 2 hours

Materials required for examination
 Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator.
 Tracing paper may be used.
 Items included with question papers Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.
Check that you have the correct question paper.
Answer ALL the questions in the spaces provided in this question paper.
You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.
If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).
There are 21 questions in this question paper. The total mark for this paper is 100 .
There are 20 pages in this question paper. Any blank pages are indicated.
You may use a calculator.

Advice to Candidates

Write your answers neatly and in good English.

$\begin{gathered} \text { Page } \\ \text { Number } \end{gathered}$	Leave Blank
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
Total	

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Volume of sphere $=\frac{4}{3} \pi r^{3}$
Curved surface area of cone $=\pi r l$

$\operatorname{adj}=$ hyp $\times \cos \theta$
opp $=$ hyp $\times \sin \theta$
opp $=\operatorname{adj} \times \tan \theta$
or $\quad \sin \theta=\frac{\text { opp }}{\text { hyp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }}$
$\tan \theta=\frac{\text { opp }}{\text { adj }}$
Sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

In any triangle $A B C$

Volume of prism $=$ area of cross section \times length

Volume of cylinder $=\pi r^{2} h$
Curved surface area
of cylinder $=2 \pi r h$
Area of a trapezium $=\frac{1}{2}(a+b) h$

The Quadratic Equation
The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Answer ALL TWENTY ONE questions.
 Write your answers in the spaces provided.
 You must write down all the stages in your working.

1. The diagram shows the lengths, in cm , of the sides of a triangle.

The perimeter of the triangle is 17 cm .
(i) Use this information to write an equation in x.
(ii) Solve your equation.

$$
x=
$$

\qquad
2. Anji mixes sand and cement in the ratio $7: 2$ by weight.

The total weight of the mixture is 27 kg .
Calculate the weight of sand in the mixture.

5. The diagram shows a wall.

7. (a)
8. A bag contains some marbles.

The colour of each marble is red or blue or green or yellow.

A marble is taken at random from the bag.
The table shows the probability that the marble is red or blue or green.

Colour	Probability
Red	0.1
Blue	0.2
Green	0.1
Yellow	

(a) Work out the probability that the marble is yellow.
(b) Work out the probability that the marble is blue or green.

The probability that the marble is made of glass is 0.8
(c) Beryl says "The probability that the marble is green or made of glass is $0.1+0.8=0.9$ "

Is Beryl correct?
Give a reason for your answer.
\qquad
\qquad

Find the equation of the straight line that passes through the points $(0,1)$ and $(1,3)$.
(b) Write down the equation of a line parallel to the line whose equation is $y=-2 x+5$
\qquad
(c) Write down the coordinates of the point of intersection of the two lines whose equations are $y=3 x-4$ and $y=-2 x-4$
\qquad
11. Here are three similar triangles.
12 cm

Find the value of
(a) w,
\qquad
(1)
(b) x,
\qquad
(2)
(c) y.
\qquad
(2)

$$
\begin{aligned}
& \text { 17. The functions } f \text { and } g \text { are defined as follows. } \\
& \qquad \begin{array}{r}
\mathrm{f}(x)=\frac{1}{x+2} \\
\mathrm{~g}(x)=\sqrt{x-1}
\end{array}
\end{aligned}
$$

(a) (i) State which value of x cannot be included in the domain of f .
(ii) State which values of x cannot be included in the domain of g.
(b) Calculate $\mathrm{fg}(10)$
(c) Express the inverse function g^{-1} in the form $\mathrm{g}^{-1}(x)=\ldots \ldots$.

19. (a) Calculate the area of an equilateral triangle of side 5 cm . Give your answer correct to 3 significant figures.

Diagram NOT accurately drawn
(b) The diagram shows two overlapping circles.

The centre of each circle lies on the circumference of the other circle.
The radius of each circle is 5 cm .
The distance between the centres is 5 cm .

Calculate the area of the shaded region.
Give your answer correct to 3 significant figures.
20. The histogram shows information about the height, h metres, of some trees.

The number of trees with heights in the class $2<h \leqslant 3$ is 20
Find the number of trees with heights in the class
(i) $4<h \leqslant 8$
(ii) $3<h \leqslant 4$
\qquad

