Level8opaedia

'A level is a level'

Compiled for www.glosmaths.org, 2008

Level8opaedia, Glosmaths, 2008

Numbers and the Number System

Understand the equivalence between recurring decimals and fractions	
Decide which of the following fractions are	Show me an example of:
equivalent to terminating decimals: 3/5, 3/11, 7/30, 9/22, 9/20	 A fraction which terminates when written as a decimal
7,50, 9,22, 9,20	 A fraction which has a recurring decimal
Write 0.45454545 as a fraction in its simplest	equivalent with two different digits repeating
terms	Whet is the series $abcut/different abcut 12/22$
	What is the same about/different about 13/33, 44/333 and 7/40
	True/Never/Sometimes: Fractions with a denominator which has a factor of 2 terminate when written as a decimal
	Convince me that 0.417417417 = 139/333

Calculating

Use fractions or percentages to solve problems involving repeated proportional changes or the calculation of the original quantity given the result of a proportional change		
Calculations involving compound interest or population growth	Show me an example of a problem involving repeated percentage change	
Use of 'proportional reasoning tables' to calculate the original amount	<pre>What is the same about/different about: £130 x 1.09 x 1.09 £130 x (1.09)² (£130 x 0.09 + £130) x 0.09 + (£130 x 0.09 + £130) £150 x 0.85 x 0.85</pre>	
	Convince me that using powers is the most efficient way of solving this problem	
Solve problems involving calculating with powers, roots and numbers expressed in standard form, checking for correct order of magnitude and using a calculator as appropriate		
Knowledge and use of laws of indices for multiplication and division	 Show me an example of Two calculations using powers that give the same value. 	
Conversion between 'ordinary form' and standard form	 Two calculations using roots that give the same value 	
Knowledge and use of the standard form function of a scientific calculator	What is the same/different about: • 1.1^2 • $1.2 \times 10-3$ • $\sqrt{(1.2/(5/6))}$ • 0.45 • $\sqrt[3]{0.009261}$	
	 True/Sometimes/Never: Cubing a number makes it bigger The square of a number is always positive You can square root any number You can cube root any number 	

<u>Algebra</u>

Factorise quadratic expressions including t	he difference of two squares,
$x^2 - 9 = (x + 3) (x - 3)$	Show me an example of a number which is can be written as the difference of two squares
	Show me an example of a two-term expression with a common factor of 2, -3, x etc
	True/Never/Sometimes: $(x + a)(x - a) = x^2 - a^2$
	When will (x + a)(x + b) have no • x term
	 positive x term negative x term
Manipulate algebraic formulae, equations a	 positive constant? nd expressions, finding common factors
and multiplying two linear expressions	
Factorise the following expression: m ⁴ -2m ³ +6m	Show me an example of a three term expression which has a common factor of:
Expand the following, giving your answer in the simplest form possible: $(2b-3)^2$	• m² • xy
	• 2x2y
	True/Never/Sometimes: $ax + b$ all squared is always greater than $ax - b$ all squared when both a and b are any number between -10 and 10.
	Convince me that $(2x-3)^2 - (2x+3)^2 = -24x$
Derive and use more complex formulae and	
See the full range of examples on page 143 of the	
KS3 Framework supplement of examples. This includes examples such as:	
 the area of a trapezium 	
 the area of an annulus 	
 the perimeter of a semicircle 	
Evaluate algebraic formulae , substituting fit See the full range of examples on page 139 of the	ractions, decimals and negative numbers
KS3 Framework supplement of examples. This	
includes examples such as:	
 the volume of a sphere 	
 the volume of a torus Solve inequalities in two variables and find 	the solution set
Solve mequalities in two variables and find See the full range of examples on page 131 of the	Show me an example of a coordinate pair that
KS3 Framework supplement of examples. This	satisfies the inequalities
includes examples such as:	 x < 5 and y > 2
 area bounded by three lines, two of which are parallel to the axes 	$y \ge x$ 2y < 3x - 2
 area bounded by a curve and a straight line 	z = 2y + 3x - 2
	How can you change the inequalities that satisfy a region so that they satisfy a different region?
	Convince me that you need three linear inequalities to describe a region.

Sketch, identify and interpret graphs of linear, quadratic, cubic and reciprocal	
functions, and graphs that model real situations	
See the examples on pages 163, 171, 175 and 177 of the KS3 Framework supplement of examples.	Show me an example of an equation of a quadratic curve which does not touch the x-axis
	 Show me an example of an equation of a parabola (quadratic curve) which is symmetrical about the y-axis is not symmetrical about the y-axis
	Show me an example of a function whose graph is not continuous (i.e. cannot be drawn without taking your pencil off the paper)
	 True/Never/Sometimes: Cubic graphs have rotational symmetry Quadratic graphs have reflection symmetry in the y-axis
	What is the same/different about: $y=x^3$, $y=x^3+2x-4$ and $y=x^3+x^2-6x$
Understand the effect on a graph of additio	n of (or multiplication by) a constant
Given the graph of $y=x^2$, use it to help sketch the graphs of $y=3x^2$ and $y=x^2+3$	Show me an example of an equation of a graph which moves (translates) the graph of $y=x^3$ vertically upwards (in the positive y-direction)
	What is the same/different about: $y=x^2$, $y=3x^2$, $y=3x^2+4$ and $\frac{1}{3}x^2$
	True/Never/Sometimes: As 'a' increases the graph of $y=ax^2$ becomes steeper
	Convince me that the graph of $y=2x^2$ is a reflection of the graph of $y=-2x^2$ in the x-axis

Shape, Space and Measures

Understand and use congruence and mather Use congruent triangles to prove that alternate angles are equal Understand and use the preservation of the ratio of side lengths in problems involving similar shapes (see p.191-193 of the KS3 Framework supplement of examples)	 Show me and example of: Two congruent shapes Two similar shapes True/Never/Sometimes: Two right angled triangles are similar If you enlarge a shape you get two similar shapes All circles are similar Convince me that: Any two regular polygons with the same number of sides are similar Alternate angles are equal (using congruent triangles)
Understand and use trigonometrical relatio	
 these to solve problems, including those into Consider sine, cosine and tangent as ratios (link to similarity) Find missing sides in problems involving right-angled triangles in two dimensions Find missing angles in problems involving right-angled triangles in two dimensions 	 Show me and example of: A hypotenuse, opposite side, adjacent side A problem that can be solved using trigonometry A triangle in which the tangent of the angle is 1 A triangle in which the cosine is 0.5 What is the same/different about three triangles with sides 3, 4, 5 and 6, 8, 10 and 5, 12, 13 True/Never/Sometimes: You can use trigonometry
	to find the missing length/angle in triangles
Understand the difference between formula contexts by considering dimensions Identify which of the following expressions represent an area if 'a', 'b' and 'c' are lengths: ab+bc, 4abc, 5a+6b, 3ab ² 2ab-c c(3b-2a)	 ae for perimeter, area and volume in simple Show me and example of: A formula for length/area/volume A possible formula for volume using the letters a, b and c as variables What is the same/different:
	 two square metres, two hundred square centimetres and two metres squared pi times radius squared, pi times diameter, length times width, length times height, length times width times height True/Never/Sometimes: 10abc is a volume Convince me that 7ab + 3ac is an area

Handling Data

Estimate and find the median, quartiles and including using a cumulative frequency diag	
Estimate the median from a cumulative frequency curve	Show me an example of a set of data with a median of 10 and an interquartile range of 7
Estimate the upper and lower quartiles from a cumulative frequency curve	What is the same about/different about the two sets of data 7, 10, 8, 7, 4, 13, 9 and 7, 9, 3, 11, 9, 2, 6
Find the interquartile range	True/Never/Sometimes: Lower quartile > Upper quartile
Use a cumulative frequency curve to find the number of pieces of data above / below a particular value	 Median = Minimum value Lower quartile < Upper quartile Interquartile range > Range Median = Lower quartile
	Convince me that the interquartile range for a set of data cannot be greater than the range
Compare two or more distributions and ma distributions and measures of average and	
Construct and interpret comparative box-plots	Show me an example of:
See the range of examples on page 273 of the KS3 Framework supplement of examples	 A pair of box plots with the same median, but an interquartile range of one double the IQR of the other A box plot with negative skew An attribute / variable which has negative skew An attribute / variable which has positive skew
	What is the same about/different about the two sets of data 7, 10, 8, 7, 4, 13, 9 and 7, 9, 3, 11, 9, 2, 6
	True/Never/Sometimes: Lower quartile > Upper quartile Median = Upper quartile Lower quartile = Upper quartile Interquartile range = Range Median < Lower quartile
	Convince me that (given two sets of data/box plots) you would choose to 'buy brand A' instead of 'brand B'
Know when to add or multiply two probabil	-
A bag contains 4 blue counters and 5 red counters. Billy picks a counter (without looking), replaces it, and then picks again. What is the probability that he picks one counter of each colour?	 Show me an example of: A problem which could be solved by adding probabilities A problem which could be solved by multiplying probabilities
Use tree diagrams to calculate probabilities	
The probability that Nora fails her driving theory test on the first attempt is 0.1. The probability that she passes her practical test on the first attempt is 0.6. Complete a tree diagram based on this information and use it to find the probability that she passes both tests on the first attempt.	 What is the same/different about the problems here: A bag contains 4 blue counters and 5 red counters. Julie picks a counter, replaces it, and then picks again. A bag contains 4 black counters and 5 pink counters. Sandra picks out two counters A bag contains 5 blue counters and 4 red counters. Walt picks a counter, replaces it, and then picks again.